The 'tf.keras.layers.Layer' class has the method ' get_weights() ' to get parameters (weight and bias).  For example, make a neural network for predicting handwritten digits as follows.   import tensorflow as tf model = tf.keras.models.Sequential([     tf.keras.layers.Flatten(input_shape=(28,28,1)),     tf.keras.layers.Dense(16, activation='softmax'),     tf.keras.layers.Dense(16, activation='softmax'),     tf.keras.layers.Dense(10, activation='softmax') ])  print(type(model)) print(type(model.layers[0])) print(type(model.layers[1])) print(type(model.layers[2])) print(type(model.layers[3])) # <class 'keras.engine.sequential.Sequential'> # <class 'keras.layers.core.flatten.Flatten'> # <class 'keras.layers.core.dense.Dense'> # <class 'keras.layers.core.dense.Dense'> # <class 'keras.layers.core.dense.Dense'>  You can check the summary of the model with the summary() method.  model...
I am a pythoner since 2020. I will write here my dairy about python, my hobby, and...